DISCUS DENTAL

Clinical Evaluations of Vinyl Polysiloxane Impression Materials FINAL REPORT

Submitted by: Barry K. Norling, Ph.D The University of Texas Health Center Division of Biomaterials San Antonio, TX

TABLE OF CONTENTS						
Evaluation 1 Contact Angles						
Evaluation 2 Tear Strength						
Evaluation 3 Moisture Displacement 3-4						
Appendix 15						
Appendix 2						
Appendix 3						
Additional Commentary by Barry K. Norling, PhD7						

DISCUS DENITAL M P R E S S I O N S 800-422-9448

Materials

All impression materials were supplied in their original packaging by Discus Dental. The materials, manufacturers and lot numbers are indicated in the following table.

55 of out of	* 50% (C)		2. 2. 2. 30 m & C. 4 2 . 10 . 10 1. 10.	4 (Dates)	See . A wreat white
iviaterial	and attant of Lord at the	Sector Sector Sector	Manufacture	r lot	Mumhor
Br. Strifferst angl	FINE CONTRACTOR	A STREAM GALLER DEL	munacture	I SAN LUL	Inningl

Aquasil ^{® (ADA type I)}	DENTSPLY Caulk	9711115
Express ¹⁰ Lite Body – Regular Set	3M	8LN2H1
Impregum [®] F	ESPE	A95B13
Splash! Extra Lite Wild Berry	Discus Dental	901965 - 901066
Splash1´ Lite Wild Berry	Discus Dental	901055 - 901056

Results and Discussions

(b) UNREALLY A UNITARY AND ADDRESS OF THE DESCRIPTION OF THE TRUE DESCRIPTION OF THE D

Results

The raw data and statistical analysis are included in the Appendix. The means and standard deviations are:

Material	Contact Angle	Standard Deviation
Aquasil™ (ADA type I)	55.2	1.5
Express™ Lite Body – Regular Set	52.5	1.7
Impregum [®] F	79.1	1.6
Splash! Extra Lite Wild Berry	32.2	1.6
Splash!* Lite Wild Berry	28.6	1.6

By SNK, each elastomer constituted a statistical subset. That is, the contact angle of each material was significantly different from those of the other materials at the p < 0.00001 level.

The materials with the lowest contact angles were the two Discus Dental products, Splash! Extra Lite (XL) and Splash! Lite (L). The results are summarized in the following graph:

Methods

Contact angle measurements were made using droplets of saturated aqueous gypsum. Pseudo-equilibrium contact angles were read at thirty seconds after contact of the drop with the elastomer surface. Measurements were made with a VCA 200 Video Contact Angle System (Advanced Surface Technology, Inc., Billerica, MA 01821). Six drops were measured for each of five specimens for each material, giving a total of 30 measurements per material. Measurements were begun approximately 60 min from the start of mixing.

Materials and Methods

NOTE:

Pseudo-equilibrium contact angles involve a time delay from surface contact to measurement to allow for the early rapid changes in contact angle which occur for some materials. The delay may be as long as 120 sec for some materials which undergo several step-function, changes in contact angle as the equilibrium angle is approached. While shorter times are desired, longer times are avoided as they have no clinical relevance, since trapped bubbles are unlikely to be released after an impression is removed from a vibrator. For the materials tested, 30 sec was adequate to yield stable readings.

Data were analyzed by ANOVA followed by Bonferroni's multiple comparison test.

Discussion

The contact angles of the Splash!⁶ Extra Lite and Splash!⁶ Lite suggest that they should be exceptionally easy to pour up bubble free. The results for the other materials require some comments. The value for Impregum⁶ F is near the values which we have previously measured. Surprise is sometimes expressed that the value is so high as the polyethers are known to be very wettable materials. However, this hydrophilicity is only historically correct. In addition to changing the stiffness of the material, the reformulation of the material (from Impregum⁶ to Impregum⁶ F) in 1989 also involved a substantial reduction in hydrophilicity. The original material had a contact angle near 20 degrees.

The value for 3M Express[™] is unexpectedly high. Our previous measurements for Express[™] Light Body material have yielded values near 18 degrees. There is no clear reason for the dramatic difference in these measurements. It is possible that Express[™] has undergone a "silent" reformulation. Alternatively, the batch we received for testing may have been out of spec.

Express™ is a registered trademark of 3M.
 Aquesil™ is a registered trademark of Dentsply.
 Impregum: is a registered trademark of ESPE.
 Splash! is a registered trademark of Discus Dental.

2

`Aaterials

All impression materials were supplied in their original packaging by Discus Dental. The materials, manufacturers and lot numbers are indicated in the following table.

Material	Manufacturer	Lot Number
Aquasil™ LV	DENTSPLY Caulk	980902
Express™ Lite Body – Regular Set	3M	19981209
Impregum [•] F	ESPE	FW0048924
Splash!" Extra Lite	Discus Dental	22-1455
Splash!' Lite Wild Berry	Discus Dental	22-1456

Results

The raw data and statistical analysis are included in the Appendix. The means and standard deviations are:

Material	ear Resistanc	e Standard Deviation
Aquasil™ LV	7.48	0.69
Express™ Lite Body – Regular Set	6.64	0.33
Impregum [∗] F	9.51	0.57
Splash!* Extra Lite	7.80	0.97
Splash!* Lite Wild Berry	8.74	0.42

By SNK, each elastomer constituted a statistical subset with the exception of AquasilTM and Splash!^{*} Extra Lite, which were not statistically different, p < 0.05. Impregum[®] F, the polyether, had the highest tear resistance. Of the vinyl polysiloxanes tested, Splash!^{*} Lite Wild Berry had the highest tear resistance, followed by Splash!^{*} Extra Lite.

* Horizontal lines connect bars which are not statistically significantly different at the p = 0.05 level by Student-Neuman-Keuls.

Materials and Methods

Materials

All impression materials were supplied in their original packaging by Discus Dental. The materials, manufacturers and lot numbers are indicated in the following table.

Methods

An extracted human third molar was mounted in acrylic resin in a PVC ring with the crown exposed. Right angle grooves 1.5 mm vide by 1.5 mm deep were milled mesio-distally along the facial and lingual surfaces using a water cooled FG-57 bur in a high-speed handpiece. For ten replicates of each of six impression materials, the tooth was immersed in deionized water and removed, leaving the adherent water in the grooves, and an

Methods

Tear strengths were measured according to a modification of the method of American National Standard/American Dental Association Specification No. 11, Agar Impression Materials, October 31, 1977. Note that there is no specification test for tear strength in either the ADA/ANSI or ISO specifications for elastomeric impression materials. The only modification from the published method was the reduction of the specimen thickness to approximately 2.5 mm to conserve material.

Data were analyzed by ANOVA followed by Student-Neuman-Keuls multiple comparison test.

Results and Discussions

Discussion

Of the vinyl polysiloxanes, the materials with the greatest tear resistances were Splash!* Extra Lite and Splash!* Lite. While no tear resistance minimums exist in the ADA/ANSI specifications for elastomeric impression materials, it is interesting that the lowest values reported exceed the minimum for agar hydrocolloids by approximately 10 fold.

The results are summarized in the following graph:

3M Express Aquasil LV Splash! XL Splash! L Impregum

EVALUATION 3 Moisture Displacement

Material Converse News Press And	Manufacturer (1996)
Aquasil™ (ADA type I)	DENTSPLY Caulk
Aquasil™ LV	DENTSPLY Caulk
Express™ Lite Body – Regular Set	3M
Impregum [*] F	ESPE
Splash! [®] Lite Wild Berry	Discus Dental
Splash!' Extra Lite Wild Berry	Discus Dental

impression made. After curing, the impressions were sectioned bucco-lingually and photographed at 30 magnification using a digital camera on a Olympus zoom microscope. The photographs were imported into Corel Draw and magnified 4X. A circle was drawn which matched the radius of the meniscus where the impression material had failed to displace water from the tooth surface. These circle diameters were analyzed by ANOVA and post

Results and Discussions

Results

The raw data and statistical analysis are included in the Appendix. The means and standard deviations are:

Material	Tear Resistance N/mm	Standard Deviation
Aquasil™ (ADA type I)	8.582	3.7
Aquasil™ LV	8.209	4.5
Express™ Lite Body – Regular Set	6.476	1.8
Impregum F	9.264	2.3
Splash!* Lite Body	3.975	1.8
Splash! Extra Lite Body	5.946	1.5

The materials fell into four statistical subsets by Student-Newman-Keuls analysis with one material, Splash!* Lite Body being significantly better than the rest. The next best statistical subset consisted of Splash!* Extra Lite and ExpressTM, which were not different from one another at the $p \le 0.05$ level.

Correlation analysis was performed for the five materials for which both moisture displacement and contact angle (wetting) data were available (i.e., all but Aquasil[™] LV), Pierson Product Moment analysis yielded a significant correlation between contact angle and fluid displacement, R2=0.8, p=0.036.

hoc multiple comparison test, and compared with previously measured contact angles by correlation analysis.

Radii were analyzed by ANOVA and Student-Neuman-Keuls multiple comparison test. Note that larger values represent poorer moisture displacement.

Discussion

Splash!* Lite Body is the best material from the standpoint of moisture displacement, and significantly better than any of the other materials. The material which displaced moisture the poorest is Impregum* F. At first sight, this result will seem very surprising to many as there appears to be a general feeling among dentists that one of polyether's strengths is its ability to sweep moisture from a contaminated field. It is quite possible that this anecdotal generalization became well established before the materials were reformulated in 1989. Just as the polyethers are no longer the most wettable materials, it is also possible that they are no longer the materials best able to displace moisture. Further work and testing is clearly needed to determine whether this is, in fact, the case.

In the study, the significant correlation between moisture displacement and contact angle was somewhat surprising. Past studies of earlier vinyl polysiloxanes in both this and other laboratories had failed to find any relationship between these two variables. This correlation and the fact that all materials have markedly different contact angles than found in previous studies suggests that the materials have been reformulated to optimize moisture displacement. This reformulation would not be surprising as wettability as measured by contact angle is a good indicator of the ability to pour a bubble free cast. But the purchaser of the material is usually not the one who pours the cast. The purchaser is, however, very concerned with the ability of the material to register a usable impression, even in the presence of unavoidable moisture contamination.

APPENDIX 1 Contact Angle Data and Statistical Analysis

Obs.	Material	MatNo CONANG	Obs.	Material	MatNo	CONANG	Obs.	Material MatNo CONANG	Obs.	Material N	/latNo	CONANG	Obs.	Material MatNo	CONANG
1.5	Express	1 51	31	Aquasil	2	57	61	Inipregum 3 73	91	Splash! L	4	29	121	Splash! XL 5	30
2	Express	1. 54	32	Aquasil	2	57	62	Inipregum 3 78	92	Splash! L	4	30	122	Splash! XL 5	31
3	Express	1 55	33	Aquasil	2	54	63	Imprégum 3 76	93	Splash! L	4	28	123	Splash! XL 5	31
4	Express	1 54 5	34	Aquasil	2	55	-64	Impregum 3 73	94	Splash! L	4	30	124	Splash! XL 5	33
5	Express	1 52	35	Aquasil	2	56	° 65	Impregum 3 30	95	Splash! L	4	28	125	SplashI XL 5	33
6	Express	1 ,51	36	Aquasil	2	56	66	Impregum 3 73	96	Splash! L	4	27	126	Splash! XL 5	32
7	Express	1 52 52	37	Aquasil	2	53	67	Impregum 3 80	97	Splash! L	4	29	127	Splash! XL 5	32
8	 Express 	1 53	38	Aquasil	2	52	68	Impregum 3 78	98	Splash! L	4	27	128	Splash1 XL 5	33
. 9	Express	1 55 -	39	Aquasil	2	56	69	Impregum 3 79	99	Splash! L	4	28	129	Splash! XL 5	35
10	Express	1 52	40	Aquasil	2	54	70.	Impregum 3 81	100	Splash! L	4	26	, 130	Splash! XL 5	30
\$11	Express	1 51 储	41	Aquasil	2	55	71	Impregum 3 80	101	Splash! L	4	30	1 31	SplashI XL 5	33 .
.12	Express	1 53	42	Aquasil	2	57	72	Impregum 3 79	102	Splash! L	4	29	132	Splash XL 5	31
13 🔅	Express	1 53 📲	43	Aquasil	2	53	73	Impregum 3 +81	103	Splash! L	4	29	133	Splasht XI≝ 5	31
414	*Express	1 52 1	44	Aquasil	2	57	74	Impregum 3 79	104	Splash! L	4	32	134	SplashFXL 5	31 4
15	Express.	1 50 2	45	Aquasil	2	55	75	Impregum 3 81	105	Splash! L	4	31	135	Splash! XL_5	33 1
16	Express,	1 52	46	Aquasil	2	57	76	Impregum 23~4 77.	106	Splash! L	4	29	136	Splash! XL-5	÷31
17	Express	1 56	47	Aquasil	2	57	77	Impregum 3 76	107	Splash! L	4	28	137	Splash! XL 5	32
-18	Express	1 56	48	Aquasil	2	54	78	Impregum 3 78	108	Splash! L	4	28	138	Splash! XL 5	34
-19	Express	1 53	49	Aquasil	2	55	79	Impregum 3 30	109	Splash! L	4	27	139	Splash! XL 5	36
;20	Express	1 51	50	Aquasil	2	57	- 30	Impregum 3 380	110	Splash! L	4	29	• 140	Splash! XL 5	34
-21	Express	1 52	51	Aquasil	2	57	- 81	Impregum 3 79	111	Splash! L	4	29	141	Splash! XL 5	31
22	Express	1 51	52	Aquasil	2	55	82	Impregum 3 82	112	Splash! L	4	28	142	Splash! XL 5	34
23	Express	1 52	53	Aquasil	2	52	83	Impregum 3 79	113	Splash! L	4	26	143	Splash! XL 5	35
24	Express	1 54	54	Aquasil	2	55	84	Impregum 3 79	114	Splash! L	4	26	144	Splash! XL 5	33
25	Express	1 52	55	Aquasil	2	55	85	Impregum 3 81	115	Splash! L	4	27	145	SplashI XL 5	30
26	Express	1 50	56	Aquasil	2	55	86	Impregum 3 79	116	Splash! L	4	28	146	Splash! XL 5	32
27	Express	1 54	57	Aquasil	2	55	37	Impregum 3 77	117	Splash! L	4	30	147	Splash! XL 5	32 .
28	Express	1 51	58	Aquasil	2	56	88	Impregum 3 82	118	Splash! L	4	31	148	Splash! XL 5	32
29	Express	1 50	59	Aquasil	2	55	89	Impregum 3 30	119	Splash! L	4	31	149	Splash! XL 5	3 <u>0</u>
30	Express	1 52	60	Aquasil	2	55	90	Impregum 3 79	120	Splash! L	4	28	150	Splash! XL 5	31

Analysis of Variance

.V's, means and standard deviations based on dependent variable: CONANG ** Indicates statistics are collapsed over this factor*

Factors:	Factors: <u>M</u> ≁		<u>N</u> 150	<u>Me</u> 49.5	<u>an</u> 267	<u>S.</u> 18.3	<u>D.</u> 258		
	1 (Express	s)	30	52.4	667	1.6	761		
	2 (Aquasil)	30	55.2	333	1.4	782		
	3 (Impreg	um)	30	79.1	333	1.5	698		
	4 (Splash!	L)	30	28.6	000	1.5	669		
	5 (Splash!	XL)	30	32.2	000	1.6	060		
F	max for test Nເ	ing ho Imber	mogen of varia	eity of I ances=	between s 5 df per v	subjects ariance	s variance = 29.	s: 1.29	Э
Analysis	of Variance	Dep	pendent	: variab	e: CONAI	١G			
Source		df	SS	<u>(H)</u>	MSS		E	E	-
Between	Subjects	149	50039	9.3910					
M	(MATNO)	4	49677	7.0900	12419.2	725	4970.441	0	.0000
Sul	oj w Groups	145	362	2.3008	2.4	986			

Post-ho	c tests for factor	· M (MATNO)			
Level	<u>Mean</u>	Level	Mean	Level	<u>Mean</u>
1	52.467	3	79.133	5	32.200
2	55.233	4	28.600		

				Newman	Bon-	
<u>Comparison</u>	Scheffe'	Tukey-A*	Tukey-B*	-Keuls*	ferroni	Dunnett
1 < 2	0.0000	0.0100	0.0100	0.0100	0.0000	0.0100
1 < 3	0.0000	0.0100	0.0100	0.0100	0.0000	0.0100
1 > 4	0.0000	0.0100	0.0100	0.0100	0.0000	0.0100
1 > 5	0.0000	0.0100	0.0100	0.0100	0.0000	0.0100
2 < 3	0.0000	0.0100	0.0100	0.0100	0.0000	N.A.
2 > 4	0.0000	0.0100	0.0100	0.0100	0.0000	N.A.
2 > 5	0.0000	0.0100	0.0100	0.0100	0.0000	N.A.
3 > 4	0.0000	0.0100	0.0100	0.0100	0.0000	N.A.
3 > 5	0.0000	0.0100	0.0100	0.0100	0.0000	N.A.
4 < 5	0.0000	0.0100	0.0100	0.0100	0.0000	N.A.

* The only possible P-values are .01, .05 or .10 (up to 0.0500).

A blank means the P-value is greater than 0.0500.

For Dunnett's test only the P-values .05 and .01 are possible and only for comparisons with the control mean (level 1).

APPENDIX 2 Test Resistance Data and Statistical Analysis

Obs.	Material	MatNo	MPa	N/mm		Obs.	Material	MatNo	MPa	N/mm	Obs.	Material MatNo	MPa	N/mm
1	Express	1	0.5206	6.560000		11	Aquasil	2	0.6104	7.672700	21	Splash! L 4	0.7302	9.066100
. 2	Express	1	0.5076	6,396800	12	12	Aquasil	2	0.6637	8.379300	22	SplashI L 4	0.7083	8.932800
. 3	Express	$\sim 1^{12}$	0.5085	6.408200	÷.	13	Splash! E	L 3	0.6280	7.908700	23	Šplash! L 4	0.6324	7.961500
4	Express	1	0.5056	6.371000	1	14	Splash! E	L 3	0.5929	7.470800	24	Splash! L 4	0.7017	8.836400
5	Express	「「「「「「「」」	0.5708	7.192300		15	Splash! E	L 3	0.7158	9.037700	25	Impregum 5	0.7735	9.739801
6	Express	1	0.5470	6.892400		16	Splash! E	L 3	0.4852	6.125000	26	Impregum / 5	0.7669	9.652800
7.	Aquasil	2	0.5476	6.907600		17	Splash! E	L 3	0.6541	8.244900	27	Impregum 5	0.6549	8.871600
8	Aquasil	2	0.6163	7.760000	ų.	18	Splash! E	L 3	0.6370	8.040000	28	Impregum , 5	0.8064	10.142901
9	Aquasil	2	0.6135	7.714300		19	Splash! L	4	0.7182	9.058800	29	Impregum 5	0.6944	8.760000
10	Aquasil	2	0.5105	6.431200	1. E. 2. S	20	Splash! L	. 4	0.6838	8.611100	30	Impreğum 5	0.7867	9.919700

Analysis of Variance

- I's, means and standard deviations based on dependent variable: CONANG
- " Indicates statistics are collapsed over this factor

Factors	M	N	Mean		<u>S.D.</u>					
	¥	30	8.0355		1.1779					
	1	6	6.6368	(0.3349					
	2	6	7.4775	0 6938						
	3	6	7.8045	. (. 0.9709					
	4	6	8.7445	().4188					
	5	6	9.5145	(0.5677					
F	-max for testi	ng homo	geneity of bet	ween subje	ects variances	: 8.41				
	Nu	mber of	variances= 5 c	lf per varia	ince= 5.					
Analysis	of Variance	Depend	tent variable:	NPERMM						
<u>Source</u>		df	<u>SS (H)</u>	<u>MSS</u>	<u>F</u>	<u>P</u>				
Between	n Subjects	29	40.2351							
Μ	(MATNO)	4	30.0664	7.5166	18.480	0.0000				
Su	bj w Groups	25	10.1688	0.4068						

Post-hoc tests for factor M (MATNO)

Level	<u>Mean</u>	Level	<u>Mean</u>	Lev	el	Mean
1	6.637	3	7.805	5		9.514
2	7.478	4	3.744			
				Newman	Bon-	
Comparison	<u>Scheffe'</u>	<u>Tukeγ-A</u> ≁	Tukey-B [*]	-Keuls*	<u>ferroni</u>	Dunnett
1 < 2				0.0500		
1 < 3		0.0500	0.0500	0 0500	0.0400	0 0500
1 < 4	0.0002	0.0100	0.0100	0.0100	0.0000	0.0100
1 < 5	0.0000	0.0100	0.0100	0.0100	0.0000	0.0100
2 < 3						N.A.
2 < 4	0.0390	0.0500	0.0100	0.0100	0.0207	N.A.
2 < 5	0.0004	0.0100	0.0100	0.0100	0.0000	N.A.
3 < 4			0.0500	0.0500		N.A.
3 < 5	0.0028	0.0100	0.0100	0.0100	0.0010	N.A.
4 < 5				0.0500		N.A.

*The only possible P-values are .01, .05 or .10 (up to 0.0500). A blank means the P-value is greater than 0.0500.

For Dunnett's test only the P-values .05 and .01 are possible and only for comparisons with the control mean (level 1).

AFPENDIX 3 Moisture Displacement Data and Statistical Analysis

Obs	MatNo	Elastomr	Snecimen	n Side Ang	le Diameter	* # 	Obs. 1	MatNo	Elastomr	Specin	nen	Side /	Anale	Diameter	Obs. MatNo	Elastomr Sp	ecimen	Side An	gle	Diameter	
G 50.	ind it is		obonitión	. çino ing									J				an an taon an t Taon an taon an t				2 2
1	1	Splash!	L 1 .	1 1	3.211000		37	2	Splash!	EL 5	i	1	1	3.897000	73 4	EXPRESS	5	2 .	1	3.528000	
2	1	Splash!	L 1	1 2	6.274000	1	38	2	Splash!	EL 5		1	2	7.990000	74 4	EXPRESS	5	2	2	5.694000	
3	1	Splash!	L 1	2 1	6.029000	63	39	2	Splash!	EL 5	,	2	1	7.965000	75. 5	AQUASIL	1	1	1.	4.656000	
4	1	Splash!	L 1	2 2	3.603000		40	2	Splash!	EL 5	;	2	2	3.970000	76 5	AQUAŞIL	1	1	2	13.626000	
5	1	Splash!	L 2	1 1	6.225000		41	3	IMPRE	1		1	1	6.463000	77- 5	AQUAŞIL	1	2	1	11.298000	
6	1	Splash!	L 2	1 2	0.833000		42	3	IMPRE	1		1	2	7.301000	78 5	AQUAŞIL	្មាំ្រា	2	2	4.877000	
7	1 _:	Splash!	L 2	2 1	0.858000		43	3	IMPRE	1		2	1	6.952000	79 5	AQUAŞIL	2	1.1.	1	8.235000	
8 .	1. :	Splash!	L 2	2 2	6.102000		44	3	IMPRE	1		2	2	7.161000	80 5	AQUAŞIL	2	1 ,	2	16.518000	
9	. 1	Splash!	L 3	1 1	3.088000	ы. <u>Е</u>	45	3	IMPRE	2	2	1	1	8.908000	81, 5	AQUAŞIL	2	2,, .	1	15.734000	
. 10	1.	Splash!	L 3	1 .2	3.431000	(z. z.)	46	3	IMPRE	2	2	1	2	12.855000	82 5	AQUASIL	2	2.	2	8.410000	
11	1	Splash!	L 3	2 1	3.333000		47	3	IMPRE	2	-	2	1	14.357000	83 5	AQUASIL	3	1	1	11.715000	
12	· 1.	Splash!	L . 3	2 2	3.284000		48	3	IMPRE	2	-	2	2	10.340000	84 5	AQUASIL	3	1	2	5.343000	
13	1	Splash!	L 4	1 1	1.912000		49	3	IMPRE	3	3	1	1	7.091000	85 5	AQUASIL	3	2	1	5.220000	
14	1	Splash!	L 4 .	1 2	4.191000		50	3	IMPRE	З	3	1	2	8.000000	86 5	AQUASIL	3	2	2	11.053001	
15	1	Splash	L 4	.2 1	3.480000)	51	3	IMPRE	3	3	2	1	8.279000	87 5	AQUASIL	4	1	1	8.308000	
16	1	Splash!	L 4	,2 2	1,740000		52	3	IMPRE	3	3	2	2	10.096000	88 5	AQUAŞIL	4	. 1	2	7.646000	
17	1.	Splash!	L 5	਼ ਹੈ ਜੁਆ ਹੈ	5.147000	12 4	53	3	IMPRE	4	ł	1	2	9.607000	89 5 - 5 -	AQUASIL	4	2	1.	8.357000	, 15 ,
18	1. 1	Splash!	L 5	1 2	5,392000)	54	3	IMPRE	2	1	2	1	8.838000	90 5	AQUASIL	4	2	2	8.088000	÷
19	1	Splash!	L : 5 · · ·	2 1	6.470000)	55	3	IMPRE	Ę	5	1	1	12.052000	91 5	AQUASIL	5	1	1	3,676000	:
20	11	Splash!	L 5	2 2	4.902000))) (4	56	3	IMPRE	Ę	5	1	2	9.921000	92 5	AQUASIL	5	1	2	7.892000	
21	2	.Splash!	EL 1	1 1	4.534000)	57	4	EXPRE	SS 1	1	1	1	5.450000	93 5	AQUAŞIL	5	2	1	6,372000	ŝ
22	2	Splash!	EL 1.	-1-0,2	4.926000)	58	4	EXPRE	SS 1	1	1	2	9.746000	94 5	AQUASIL	5	2	2	4,607000	ŝ
23	2	, Splashl	EL 1 🕂	2 7 1	4.411000	1	59	4	EXPRE	SS 1	1	2	1	8.454001	95 👌 6	AQUALV	1.1		1	4,995000	
* 24	: 2 :	Spláshl	EL 11	*2 * 2	5.00000))	60	4	EXPRE	SS 1	1	2	2	6.428000	96 - 6	AQUALV	31.,	1	2	10.515000	
• 25	2 -	Splash!	EL 2	1 1	5:318000)	61	4	EXPRE	SS 2	2	1	1	4.821000	97 ; 6	AQUALV	1	2	1	10.655000	r.
- 26	2	Splash	EL 2-1	1: / 2	4.142000)	62	4	EXPRE	SS 2	2	1	2	5.974000	. 98 . 6	AQUALV		2 3	2*	5.310000	
27	×2 †	Splash	EL 2 .	-245-1	4.779000) (63	4	EXPRE	SS 2	2	2	1	4.437000	99, 61	AQUALV	24		1.	3.284000	
28	.2	Splash!	EL (2:	2. 2	ei 5.514000		64	4	EXPRE	SS 2	2	2	2	5.450000	100 6	AQUALV	2	a la sta	2	3.843000	ţ.
29	2	Splash!	EL 3		7.181000		65	4	EXPRE	SS 3	3	1	1	8.838000	- 101 - 6	AQUALV	- 2	200	1	3.528000	
30	- 2	Splash!	EL 3	. 1	7,205000		66	4	EXPRE	SS 3	3	1	2	7.196000	102 6	AQUALV	2	2	2	3,423000	
:31	2	Splash	EL 3	2 1	5,95500)	67	4	EXPRE	SS :	3	2	1	7.091000	103 6	AQUALV	3	생활	1	8.349000	
32	2	Splash!	EL 3	2 . 2	7,867000		68	4	EXPRE	SS :	3	2	2	8.838000	104 6	AQUALV	3	-2	2	8,838000	12
33	2	Splash!	EĽ 4	18531	7.769000		69	4	EXPRE	SS 4	4	1	2	7.336000	105 6	AQUALV	. 4	1.	1.	10.026000	19f
34	2 .	Splash!	EL 4	1, 2, 2	6.07800)	70	4	EXPRE	SS 4	4	2	1	7.930000	106 6	AQUALV	4	1	2	16.733000	
35	2	Splash!	EL 4	2 1	6.10200)	71	4	EXPRE	SS S	5	1	1	5.519000	107 6	AQUALV	4	2	1	16.209000	
36	2	Splash!	EL 4	2 2	8,30800)	72	4	EXPRE	SS	5	1	2	3.843000	108 6	AQUALV	4	2	2	9.222000	

Analysis of Variance N's, means and standard deviations based on dependent variable: DIAMETER * Indicates statistics are collapsed over this factor Factors: M Ν <u>Mean</u> <u>S.D.</u> 108 6.9423 3.2371 1 Splash! LB 3.9753 1.7974 20 2 Splash! XL 20 5.9456 1.5146 3 Impregum 16 9.2638 2.2814 4 Express 18 6.4763 1.8137 5 Aquasil 20 8.5815 3.7023 6 Aquasil LV 14 8,2093 4.4684 Fmax for testing homogeneity of between subjects variances: 8.70 Number of variances= 6 df per variance= 17. Analysis of Variance Dependent variable: DIAMETER Source df SS (H) <u>MSS</u> E Ρ Between Subjects 107 1121.2554 M (MATNO) 5 362.2941 72.4588 9738 0.0000 Subj w Groups 102 758,9612 74408 Level Mean Level Mean Increasing Order S - N - K 3.975 1 Splash! LB Splash!LB 1 2 5.946 2 Splash! XL Splash! XL 3 9.264 Impregum 4 Express 4 6.476 Express 6 Aquasil LV 5 8.582 Aquasil 5 Aquasil 6 8.209 Aquasil LV 3 Impregum

Beginning two decades ago, we showed that vinyl polysiloxane impression materials could be improved by additions of carefully selected surfactants. We were addressing the number one complaint about those newly introduced materials. While incredibly dimensionally accurate and dimensionally stable, these "addition silicone" impressions were exceptionally difficult to pour up without trapping air bubbles. Most manufacturers adopted our methods and produced new "hydrophilic" materials that were wettable - in one case as wettable as the water-based hydrocolloid materials. But it wasn't long before some manufacturers recognized that they might have solved the wrong problem: the dentists who purchased the impression materials didn't pour impressions up. The dentists were more interested in materials which were "forgiving", a term most often taken to mean usable even when the field was somewhat contaminated by oral fluids. Before long, some advertising copy began implying that the hydrophilic vinyl polysiloxanes were capable of displacing moisture from contaminated fields. But academic researchers like ourselves showed that was not the case. Wettability from the standpoint of ease of impression pouring was essentially unrelated to the ability to sweep contamination aside.

Recently, manufacturers have modified their materials with an eye to making them more able to displace moisture. The side effect has been an increase in the contact angle measured with a drop of slurry water. But that really isn't a problem because as long as the angle is below 70 degrees or so, the materials are relatively straightforward to pour up; it is just the unmodified materials with contact angle exceeding 90 degrees that are exceptionally difficult. When measured today, few materials yield the same contact angles that they had a few years ago. The obvious question is "were hese efforts successful?"

Post-hoc tests for factor M (MATNO)

						Newman		Bon-
<u>Comparison</u>			Scheffe'	Tukey-A*	Tukey-B*	-Keuls*	ferroni	<u>Dunnett</u>
1	<	2				0.0500		
1	<	3	0.0000	0.0100	0.0100	0.0100	0.0000	0.0100
1	<	4			0.0500	0.0500		0.0500
1	<	5	0.0001	0.0100	0.0100	0.0100	0.0000	0.0100
1	<	6	0.0025	0.0100	0.0100	0.0100	0.0004	0.0100
2	<	3.	0.0277	0.0100	0.0100	0.0100	0.0070	N.A.
2	<	4						N.A.
2	<	5			0.0500	0.0500	0.0431	N.A.
2	<	6				0.0500		N.A.
3	>	4		0.0500	0.0500	0.0500		N.A.
3	>	5						N.A.
3	>	6						N.A.
4	<	5						N.A.
4	<	6						N.A.
5	>	6						N.A

*The only possible P-values are .01, .05 or .10 (up to 0.0500). A blank means the P-value is greater than 0.0500.

For Dunnett's test only the P-values .05 and .01 are possible and only for comparisons with the control mean (level 1).

ADDITIONAL COMMENTARY Barry K. Norling, Ph. D

To find out, we devised a new simple test of the ability to displace moisture. We machined a natural tooth so that the occlusal table was flat, and then machined two 90-degree ledges on the lingual and buccal surfaces. The mounted tooth is dipped into water (occlusal surface down) and withdrawn, leaving the ledges filled with clinging water. The tooth is then lowered into a bottle cap "tray" containing the impression material. After setting, the impression is sectioned perpendicular to the ledges. If the water were completely displaced, the 90 degree ledges would have sharp angles with zero radii. In reality, there is always a residual meniscus of undisplaced water. By measuring the radius of that meniscus, the degree to which the impression material displaces moisture can be measured. By comparing the average radii for commercial materials, one can judge their relative ability to displace moisture.

In our tests, one material – Splash!* Lite Body – was a standout, producinga radius statistically lower than those of all other materials. Its brand mate, Splash!* Extra Lite Body, followed it. Interestingly, the polyether material Impregum* yielded the highest mean meniscus radius. That is surprising because "polyether" is synonymous with "forgiving" in many dentists' minds. The result may be explained by the fact that the polyethers were modified about twelve years ago to make them less stiff. In the process, they also became less wettable and less able to displace moisture.

In summary, the newly modified vinyl polysiloxane materials are successful at meeting their new goal of displacing moisture. But some are more successful than others. While every dentist is obliged to maintain a field as contamination free as possible, when zero contamination is impossible, materials like Splash!* should significantly improve the chances of getting a usable impression.

Norling, B. K. and Reisbick, M. H. Wetting of elastomeric impression materials modified by nonionic surfactant additions. J Dent Res 56:148, 1972. (Soecial B) Brukl, C. E. and Norling, B. K. Wettability of addition silicone impression materials modified by nonionic surfactants. J Dent Res 58:143, 1979. (Special A) Norling, B. K. and Relsbick, M. H.: The effect of nonionic surfactants on bubble entrapment in elastomeric impression materials. J Pros Dent 42:342-347, 1979. Norling, B. K. and Brukl, C. E.: Surface wettability modification of poly(vinylsiloxanes) with nonionic surfactants. Colloids and Surfaces 20:277-88, 1986. Norling, B. K. and Crun, L. J.: Wetting properties of hydrophilic and conventional poly(vinylsiloxanes). J Dent Res 67(abstracts):282, 1988.